Лобанов-логист
Лобанов-логист
Личный кабинетВходРегистрация
Например: Логистика

ЧТО НУЖНО ЗНАТЬ, А ЧТО ЗАБЫТЬ О ВНЕДРЕНИИ ИННОВАЦИЙ НА ПРЕДПРИЯТИЕ

ЧТО НУЖНО ЗНАТЬ, А ЧТО ЗАБЫТЬ О ВНЕДРЕНИИ ИННОВАЦИЙ НА ПРЕДПРИЯТИЕ


В процессе внедрения инновационных решений на промышленных предприятиях часто можно столкнуться с барьерами. В их числе мифы, в которые верят заказчики.


Екатерина Баклунова, эксперт компании Factory5 (входит в ГК Ctrl2GO) выбрала 10 самых популярных мифов о цифровой трансформации и прогнозном обслуживании оборудования и ответила, что в них близко к реальности, а что точно вымысел. 


Миф 1. «Всем нужна цифровизация»


Далеко не все готовы к переходу в Индустрию 4.0 по разным причинам. Внедрение инновационных решений отличается от внедрения прочих учетных систем, например, ERP или EAM. И если даже при работе с последними компании сталкиваются с вызовами и барьерами, то что говорить о цифровых решениях.



Недостаточная автоматизация базовых процессов, беспорядок в методологическом обеспечении и НСИ, процессах сбора данных — случаи, когда еще рано говорить о цифровых сценариях.




Кроме этого, цифровизация в России воспринимается многими управленцами как дань моде и часто происходит во имя самой цифровизации. Из-за отсутствия опыта и готовности к переменам многие набивают кучу шишек. 


Другой случай, когда цифровизация становится экономически нецелесообразной. Как правило, это касается внедрения систем диагностики и прогнозирования для некритичного оборудования, оборудования, которое дублируется и не является дорогостоящим. В этих случаях технически можно реализовать цифровой сценарий, но при расчете экономики выгоды нет. Это не окупается и выходит нецелесообразно. 


Миф 2. «Цифровизация — это дорого»


Перед запуском проекта цифровая инициатива проходит через определенные этапы согласования. Один из таких — разработка и согласование технико-экономического обоснования (ТЭО), цель которого — определить экономическую целесообразность внедрения цифрового сценария. ТЭО на раннем этапе дает четкое представление о возможности разработки PdM-решения с учетом имеющихся ресурсов и технологий на предприятии. Так, лица, принимающие решения, знают потенциальный объем затрат на проект, сроки его окупаемости и результаты работ. 


Если сумма на реализацию проекта выше ожидаемой, то есть способы оптимизации стоимости проекта. Например, можно использовать разные варианты размещений решения: в облаке (cloud) и на мощностях заказчика (on-premise). Правильно сделанный выбор позволяет оптимизировать стоимость владения для конкретного предприятия.


Миф 3. «Цифровизация — это всегда про новейшие технологии»


Есть представление, что цифровое решение для производства — это волшебный черный ящик, в который можно просто сложить всё, что есть, и получить результат на выходе. На деле — это кропотливый труд проектной команды.


На одном из этапов внедрения необходимо провести методологическую работу и разработать модель (дерево) оборудования с разузловкой до контролируемых параметров.


На другом этапе аналитики, математики и data-scientist-ы трудятся над анализом данных и определяют каким методом лучше реализовать задачу. Примером используемых методов для прогнозного обслуживания могут быть экспертные правила, алгоритмы машинного обучения, или физические модели, а может и их комбинация. 



Только после всех необходимых действий в рамках проекта за поступающие в систему данные принимается программное обеспечение.




Инновационность подхода состоит в том, что у разработчиков решений появились новые технологии, которые позволяют автоматизировать процесс сбора, хранения и анализа больших данных с высокой скоростью. Это является большим скачком в развитии и разработке цифровых решений.


Миф 4. «У нас недостаточно данных, поэтому цифровое решение нам не подходит»


На предпроектном обследовании изучается ИТ-ландшафт и имеющиеся данные. В случае недостаточности данных есть несколько вариантов:


1. Создать не интерпретируемую модель: она будет выявлять неполадки и оборудование, в котором они обнаружены, но не сможет конкретизировать узел и предсказывать поломки, которые могут произойти в будущем. Но это уже будет первым шагом для дальнейшего накопления данных и применения других средств анализа данных с возможность Predictive.


2. Для обучения моделей используются данные с информацией о дефектах и отказах. Но если таких данных нет, можно применять методы на основе машинного обучения, не требующие такой информации.


3.Если вообще нет статистики, поиск инцидентов можно осуществлять с помощью физических моделей — это математические модели физических процессов оборудования, которые устанавливают связь входных и выходных параметров рассматриваемого процесса, с использованием физических законов.С их помощью можно осуществлять поиск аномалий и прогнозировать техническое состояние.


Миф 5. «Если есть данные, то цифровизоваться будет легко»


Если текущая автоматизация позволяет собирать большие объемы данных, может возникнуть уверенность, что данных достаточно, и других не требуется. Это не так, если система сбора данных и иерархия АСУ ТП строилась в первую очередь для решения задач управления основными технологическими процессами. Оснащение датчиками, сбор и хранение данных с этих датчиков могут быть достаточны именно для задач управления техпроцессом.


Задачи диагностики и определения/мониторинга технического состояния либо не ставились, либо могли охватывать только узкий спектр оборудования. Поэтому и данных для решений по предиктивной аналитики может быть недостаточно. 


Кроме того, количество данных хоть и важный критерий, но он один не обеспечивает достаточность. Важно еще и их качество. Если данные поступали не с требуемой дискретностью или вносились вручную и имеют много погрешностей, то с такими данными работать будет сложнее.


Миф 6. «Процесс внедрения займет много времени и потребует остановки производственного процесса, а значит, и большие материальные потери»


Практика внедрения цифровых решений, несмотря на свою молодость, уже довольно обширная. Проекты требуют выделения ресурсов, а весь процесс, начиная от предпроектного обследования и заканчивая вводом в эксплуатацию, занимает 9-18 месяцев. Это зависит от разных факторов: организационно-функционального объема, территориальной распределенности активов предприятия, готовности инфраструктуры и многих других.


Стоит понимать, что внедрение цифровых решений можно разбить на условные этапы, смотреть на промежуточные результат и принимать решение о дальнейшем внедрении. Например, сначала наладить сбор, хранение и анализ данных на базе или с использованием экспертных правил, что позволит выявлять аномалии, а затем внедрить математические модели для построения прогнозов. Так производственный процесс останется непрерывным, а сама цифровизация пройдет менее болезненно. 


Миф 7. «От нас не потребуется никаких усилий»


Казалось бы, есть датчики, которые регистрируют параметры работы оборудования, история о дефектах с момента ввода оборудования в эксплуатацию. Осталось привлечь специалистов по анализу и моделированию данных, которые обработают параметры с историей, разработают модели для расчета вероятности наступления отказов. И готово — можно переходить на прогнозное обслуживание.


Техническая возможность прогнозирования потенциальных дефектов и отказов и наличие бюджета являются важнейшими составляющих для перехода на Predictive Maintenance.



Но наш проектный опыт показывает, что ключевым фактором является способность предприятия к культурной трансформации.




Важно, чтобы сотрудники производственного и технического персонала понимали выгоды от использования данных о состоянии оборудования, были более ответственными по отношению к качеству и актуальности данных, вводимых вручную, осознавали потенциал современных технологий и доверяли результатам работы информационных систем.


Миф 8. «Цифровизация не потребует переквалификации персонала»


Именно для проведения культурной трансформации на PdM-проектах особое внимание уделяют области управления изменениями. После внедрения инновационного решения реальность изменится. Например, оборудование будет рекомендовано системой к выводу в ремонт до того, как наступят события, привычные для персонала. 


Поэтому основными задачами в части управления изменениями становятся:


1. Подготовка сотрудников к необходимости изменить привычное поведение при работе с данными в информационных системах;


2. Повышение доверия к информационным системам;


3. Развеивание страхов о будущей невостребованности сотрудников в связи с внедрением PdM-решения;


4. Формирование у сотрудников привычки непрерывного обучения, как неотъемлемой составляющей своей работы.


Миф 9. «Результаты не заставят себя ждать»


Внедрение цифровизации — это не разовая акция, а проект. И как любой проект, он требует финансовых и временных ресурсов, ответственного отношения и вовлеченности подрядчика и Заказчика, готовности меняться. Чаще время ожидания результата зависит от объема проекта. Например, пилотные проекты могут занять срок в несколько месяцев, но по их итогам можно будет увидеть первые эффекты, а далее остается наращивать функционал и организационный объем.


Миф 10. «Результаты не окупят затраты»


Внедрение цифровых решений в области технического обслуживания и ремонтов помогает избежать внезапных аварий и отказов оборудования, скрытых дефектов, которые могут негативно повлиять на выполнение производственной программы и планы поставок, качество производимой продукции, создать угрозу здоровью человека и окружающей среде, стать причиной штрафов, потери репутации и разбирательств. В таких случаях стоимость внедрения цифровых решений выходит намного меньше материальных и репутационных последствий серьезного отказа.


Практический опыт показывает, что все мифы существуют только до того момента, пока заказчик не решился на внедрение новых технологий и не погрузился в процесс, узнав о нем больше. Важно не бояться развеять заблуждения, решившись на перемены, которые приносят реальные эффекты.


https://www.lobanov-logist.ru/library/352/64276/
https://ekspertov.ru/

Источник: rb.ru

дата: 05.10.2021 11:34:02    просмотров: 280

рейтинг: 
(Голосов: 1, Рейтинг: 5)



Рекламный блок

Дефицит складов в России перекинулся с крупных регионов на маленькие Парадоксальное лидерство: как изменились требования к современным руководителям Дорожающая логистика грозит спровоцировать новый рост цен в России РЕЙТИНГ СТОИМОСТИ ДОСТАВКИ СБОРНЫХ ГРУЗОВ ПО РОССИИ 2024