Почему не работает АВС, или Молотком – по пальцам! Ярослав СТЕПЧЕНКОВ, бизнес-тренер компании «УкрБизнесКонсалтинг-2000», сертификат IPMA(D) В № 6 «Дистрибуции и логистики» за текущий год был опубликован материал «АВС-анализ: создайте очередь». Принцип классификации объектов управления становится в последнее время популярным. Однако далеко не все и не всегда, к сожалению, понимают и оценивают его адекватно. А потому нередко после тренингов ко мне подходят ребята с одним и тем же вопросом: «Почему АВС и XYZ у нас не работают?» Начинаю расспрашивать: что анализировали, с какой целью? И практически каждый раз выясняется, что цель была одна – внедрить АВС-анализ, потому что «так положено», «чтобы было больше порядка». Работу провели, разбили товары на группы, а путаницы и сбоев стало еще больше. Действительно, почему? Да потому, что многие начинающие логисты и управленцы делают одну и ту же ошибку – воспринимают АВС-анализ как стратегию, а не как инструмент, метод классификации объектов управления. А инструмент можно использовать только в нужное время, в нужном месте и с определенной целью. Человек берет в руки молоток для того, чтобы забить гвоздь или расколоть орех, а не просто потому, что это хорошая и нужная штука. Точно так же мы берем на вооружение АВС-анализ, когда надо разделить сотни или тысячи наименований объектов (запасов, клиентов, поставщиков, каналов сбыта и т.д.) на группы, которыми можно управлять по общим принципам. И прежде, чем приступать к классификации, должны ответить на ряд вопросов. Что анализируем? Прежде всего, очень важно определиться с объектами анализа. Простой пример. Фирма торгует одеждой. В ассортименте – костюмы, модные вещи и брендовые. Практически это три различных рынка. Какой более важен для компании? Возможно, главное – костюмы, а все остальное – «для количества»? Это вопрос стратегии. Но если анализировать прибыльность всех товаров вместе, то вполне может оказаться, что в группе А окажутся только бренды. Отсюда – перекос в ассортименте и управлении запасами, ведь костюмам, согласно результатам такого анализа, будет уделяться гораздо меньше внимания. Чтобы этого не произошло, очевидно, всю массу продукции стоит разбить на виды и проводить АВС отдельно по каждому. И тогда появится три группы А – для каждого из рынков. Кроме того, костюмы могут быть дешевые, дорогие и средние – их тоже, вероятно, не стоит смешивать «в одной корзине», если компания планирует делать упор на один из сегментов. И тогда групп А, В и С уже становится по девять – в каждом из сегментов каждого из рынков. Не менее важно верно выбрать и признаки, по которым объекты объединяются в группы. Чтобы не получалось так, как в одной компании (это тоже рассказывали слушатели семинаров): ежемесячно проводят анализ товаров по стоимости и в зависимости от результатов… переставляют их в складе. Может быть, там интенсивность приемки/отгрузки зависит от цен, а не от спроса? Или люди не понимают, какой анализ для чего делается? Для одних и тех же товаров нередко приходится проводить АВС-анализ 4–5 раз – по разным признакам для разных целей. Например, для выбора ассортимента – по себестоимости, для управления товаром в складе – по продажам (в единицах складского учета либо единицах измерения), для определения приоритетов финансирования – по прибыли на единицу товара и т.д. И при этом один и тот же товар может быть в разных классах по результатам разных анализов. Дерут ли с новенького шкурку? Немаловажный вопрос – к какому классу управления запасами отнести новый товар, который только выводится на рынок? Если просто внести его в список и анализировать продажи на общем основании… Допустим, вы проводите такой анализ в начале каждого месяца, а новинка появилась двадцатого числа. Наверняка по количеству продаж она в этом месяце проиграет и окажется в группе С. Значит, в дальнейшем вы не станете уделять ей большого внимания, постоянно контролировать наличие на складе и торговой полке? Попросту говоря, лишите новый товар шансов проявить себя в будущем. Затем ли его на рынок пытались вывести? Очевидно, новые позиции ассортимента в группе В или С оказываться не должны. А значит, не должны поначалу участвовать в «общем конкурсе». Для каждого бизнеса есть понятие срока вывода товара на рынок: какой-то становится достаточно известным за месяц, другой – за три, третий – за год. И на этот период по отношению к товару проводится «политика наибольшего благоприятствования». Его, как малое дитя, надо вывести к потребителю «за ручку». Практически это означает, что на срок, необходимый для того, чтобы вывести новый товар на рынок, для него объявляется мораторий – его автоматически причисляют к группе А и «глаз с него не сводят». И только по окончании установленного срока включают новинку в общие списки для анализа. Это легко сделать даже в том случае, когда проведение АВС автоматизировано. В учетной программе определенный класс управления запасами присваивается товару как периодический реквизит, т.е. вводится дата. Она сравнивается с датой проведения анализа, и если «расстояние» оказывается меньше, чем срок выхода товара на рынок, сам товар и все его продажи из анализа исключаются. Тем самым вы товару даете право на жизнь, не пристреливаете его на взлете. Когда анализируем? Вполне очевидно, что любой анализ и деление товаров на группы возможны только на основе статистики. Начиная бизнес, не имея опыта продаж на данном рынке, можно ли определиться, в чем вы будете более успешны? Ведь один и тот же товар может быть в группе А у одной компании и в С у другой, если у нее иная направленность. У одной фирмы в ассортименте 80% техники и 20% запчастей, а у другой – строго наоборот, хотя когда-то они начинали работать одинаково. Это вопрос стратегии и специализации. И прежде, чем делать АВС, надо понимать, как ведет себя фирма с товарными запасами, клиентами, поставщиками, на каких сегментах акцентирует внимание. От этого зависят «правила игры» для каждого товара. Но и в развитом бизнесе нельзя выставлять оценки товарам «когда в голову взбредет». Особенно если имеют место периодические колебания, всплески/падения продаж – допустим, сезонные. Например, некоторые фирмы проводят АВС-анализ регулярно, каждые полгода. И планируют продажи следующего полугодия по итогам предыдущего. И получается, что мороженое, которое зимой не продавалось, летом мы возить не будем! Очевидно, более корректно было бы анализировать продажи за полный цикл – допустим, год, с 1 января по 31 декабря. Либо брать межсезонье и сезон по прошлым данным и эту пропорцию (но не абсолютное значение!) переносить на будущее, учитывая изменения внешней среды. А если в год два пика (сезона), причем продолжительность первого и второго разные? Тогда анализ за год поможет выявить только общую тенденцию, а для более детального планирования необходимо проводить его для одного пика, для второго и в межсезонье. И четко понимать, совпадают ли тенденции одного всплеска и другого. Например, в строительном бизнесе есть значительный рост продаж весной и осенью. Но в первом случае продаются в основном кирпич и цемент, а во втором – отделочные материалы. Очевидно, будет ошибкой разрабатывать товарную политику на осенний период по результатам анализа весеннего. И получается, что АВС следует делать не тогда, когда просто решили, что это надо, а брать аналогию из прошлых периодов, понимая, что история перенесется на будущее. Не просто статистика Как только период n заканчивается, вы подбиваете его результаты, берете аналогию прошлого периода (n-1) и определяете темп роста/понижения тренда: t’ = tn/tn-1. И на это число (t’) корректируете пропорцию второго сезона. Благодаря этому вы можете предположить, как товар будет вести себя в следующем сезоне, и соответственно корректировать свои действия. Если, к примеру, товар в этом периоде был в категории В, но линия тренда уходит резко вверх (т.е. продажи быстро растут), возможно, стоит уделить ему больше внимания? Возможно, у вас появился новый продавец (магазин), который умеет этот продукт хорошо продавать. А если вы не будете пополнять запас вовремя, продажи не вырастут и товар никогда не уйдет в высшую категорию. И только из-за того, что правила игры разработаны по прошлому образцу, без учета реального положения вещей. Миграция товаров между группами Еще раз повторимся, что АВС-анализ является лишь методом классификации, который позволяет разбить активный ассортимент на группы, в отношении каждой из которых разрабатывается своя стратегия управления. Эти стратегии различаются, прежде всего, уровнем сервиса: для категории А он может быть 100%, для В – 95, а для С – например, 90%. Но важно помнить, что анализируется именно активный ассортимент, тот, которым непосредственно управляет логистика. Ведь в каждой фирме есть так называемые заказные позиции, которые не держат в складе постоянно, а привозят под конкретный заказ. Включать их в АВС-анализ не стоит, потому что одна случайная продажа (если это, допустим, большой контракт) способна изменить всю картину. Этот товар сразу рванет в группу А и сдвинет все остальное в мусор. Но будет ли такая же продажа в следующем периоде? Чтобы избежать таких перекосов, надо четко выделять заказные позиции в дополнительный сегмент, кроме групп А, В и С, и не учитывать их при анализе. Еще один особый сегмент – «мертвых» запасов. Это либо устаревшие морально и уже не выпускающиеся производителем товары, либо те, которые мы просто не умеем успешно продавать. Они также выпадают из АВС, потому что по ним нет продаж. Хотя реально в складе они существуют. Что отправлять «на кладбище» – вопрос стратегии. Например, в какой-то момент мы решаем для себя, что последние n позиций категории С, продажи которых продолжают падать, «снимаем со счетов» – перестаем завозить и только дораспродаем остатки. Как «санитары леса», очищаем свой активный ассортимент от балласта. В результате мы имеем пять групп товаров, между которыми происходит постоянная миграция. Вводится новый товар, который на «испытательный срок» автоматически включается в группу А. Но эта группа имеет определенные – финансовые либо объемные – рамки. А значит, в момент появления новинки какой-то другой продукт (или продукты) вытесняется в В и – последовательно – в С и в заказные (если менеджер приходит к выводу, что ради одной-двух продаж в год не стоит держать на складе постоянный запас) либо в «мертвые». Но возможна и обратная миграция – из заказных товар может перейти в активный ассортимент. Это тоже определяется таким словом, как стратегия: менеджмент определяет, при каких объемах и частоте заказов стоит создавать и поддерживать запас – к примеру, если товаром интересуется 20 клиентов в месяц на сумму 100 тыс. грн. Таким образом у нас получается система активного управления (клиентами ли, запасами), круговорот товара в природе: рождение, варианты развития, шансы и «кладбище». И всегда есть возможность эту систему обновлять по принципам естественного отбора – кто больше вырос, выталкивает слабого со склада, а склад (активный) при этом не увеличивается. Новый товар выталкивает устаревший в мертвые либо в запасные, а количество активных позиций остается прежним. Если же группы А, В и С жестко зафиксированы, приток «свежей крови» затруднен путающимся под ногами «мусором», и никакой анализ не поможет навести порядок на этой свалке. Влияние случайности Точно так же не может быть жесткой классификация по XYZ – слишком велики шансы недооценить поведение товара, «выдернув» его из временного ряда продаж. Во-первых, хотелось бы вернуться к формуле для вычисления коэффициента вариации, предложенной автором статьи в № 6 для анализа стабильности показателей: , где – значение параметра по оцениваемому объекту за i-тый период, – среднее значение параметра по оцениваемому объекту анализа, – число периодов. Эту формулу предлагают многие учебники, не уточняя, однако, что она достаточно «правомочна» лишь при работе с генеральной совокупностью. Но XYZ-анализ обычно проводится на основе выборки. Мы выдернули товар из потока и привязали к среднему именно в этом временном периоде. А значит, в расчетах коэффициента вариации должна появляться минус одна степень свободы: . Отсутствие этого минуса (в знаменателе числителя) при работе с выборкой приводит к колебанию результата от 3% до 6%. А значит, товар может попасть не в ту категорию. Не следует также забывать, что, согласно основным законам статистики, в выборке должно быть не меньше 30 значений: чем их больше, тем лучше прослеживается закономерность. В то же время, чем больше вы берете периодов, тем больше даете влияния закономерности, акцентируете внимание на линию тренда, а не на флуктуации вокруг среднего. Здесь тоже надо садиться и подбирать оптимальный вариант n – 30 дней, 160 либо год. Давайте рассмотрим четыре варианта колебания объемов продаж в длительных периодах, допустим, за год (рис. 1, 2, 3 и 4). Согласитесь, очень разные выводы можно сделать, если анализировать данные всего графика, между первым и вторым пунктирами и между первым и третьим. И только рассматривая изменения в течение достаточно долгого времени, можно отследить тренд, т.е. стойкую тенденцию к росту или снижению объемов продаж (запасов, расходов и т.д.). рис. 1 рис. 2 рис. 3 рис. 4 К сожалению, когда XYZ-анализ проводится механически, на данных небольшого временного промежутка, в категорию Z вполне может попасть товар, продажи которого постоянно растут. Ведь по графикам на рис. 1 и 4 коэффициент вариации покажет, что продажи нестабильны, подвержены постоянным флуктуациям (изменениям). Но эти изменения сами по себе имеют определенную закономерности. И чтобы это обнаружить, нужно вводить дополнительные критерии анализа. Например, коэффициент автокорреляции, который позволяет выяснить, являются ли наши данные во времени случайными, постоянными или имеют определенный тренд. rk = , где Yi – значение параметра за текущий период, Yср.– среднее значение параметра, k – количество сдвигов. Если k=1, мы сравниваем сегодняшние продажи с прошлым периодом, если к=2 – с позапрошлым и т.д. Простой пример. Прежде, чем проводить АВС-анализ, следует проверить, является ли рост продаж данного товара постоянным или это разовый всплеск, контракт. Иногда руководители пытаются данные разовых продаж изначально учитывать отдельно, например, ставить «галочки» в соответствующих накладных. Этот способ трудно назвать надежным – слишком уж он зависим от человеческого фактора: кто-то наставит лишних «галочек», а кто-то вообще о них забудет. Поэтому лучше использовать математические методы. Они позволяют практически безошибочно отследить тренд. Если, допустим, для k=1 коэффициент автокорреляции будет близок к единице (≈ 0,7–0,8), для k=2 – близок к 0,5, k=3 – к 0,3 и для k= 4 приблизится к нулю, тогда можно четко утверждать, что есть трендовая составляющая – либо убывание, либо возрастание, но подверженное закономерности. Для случайного всплеска, случайных продаж эта величина будет сразу же очень близка к нулю, даже может иметь отрицательное значение. И мы сразу видим, что данная продажа является случайной и ее нет смысла включать в АВС-анализ. Точно так же мы можем определить и сезонность, когда наступает сезон. С помощью того же коэффициента автокорреляции. Про него почему-то все забывают. Конечно, тех же результатов можно достичь, длительное время проводя раздельный учет розничных покупок и крупных заказов, создавая и анализируя соответствующую статистику. Просто посадить человека, который будет все учитывать и анализировать. Это требует много времени, по моему опыту – около 2 дней на каждую из товарных позиций. А если в ассортименте компании их 10–15 тысяч, комментарии, как говорится, излишни. При использовании же вероятностных моделей соответствующий расчет занимает 5–8 минут. Прежде, чем «отправлять в тираж» Но и после того, как мы определили, является ли рост/падение продаж случайным или постоянным, работу нельзя считать законченной. Предстоит еще выяснить, почему не продавался товар – на него нет спроса или его просто не было на складе? Если мы имеем график продаж, похожий на рис. 4, то его, очевидно, стоит сравнить с графиком наличия запасов на складе. Если в период отсутствия продаж товар был в наличии – значит, действительно не было спроса, и эти данные можно учитывать в анализе. Если же товара не было, задача усложняется. Хорошо, если менеджеры ведут статистику дефицита и могут сообщить, сколько раз отсутствующий товар спрашивали – тогда можно пустоту в продажах заполнить спросом (хотя и с известной долей скептицизма, если спрос является отсроченным). Но чаще всего такого учета нет, и аналитикам приходится заняться прогнозированием. Просто посчитать с этой «ямой» нельзя: то, что вы провалили запасы, является не закономерностью расхода, а следствием вашего влияния на эту закономерность. Глубину и силу этого влияния также можно вычислить математическими методами. В частности, используя коэффициент корреляции, который применяется для измерения тесноты взаимодействия между различными признаками (в нашем случае – наличием запасов и продажами). Rxy = , где xi, yi – значения изучаемой пары признаков n объектов (i = 1, 2, …, n); xср., yср. – среднее арифметическое каждого ряда значений x и y. Значение Rxy находится в промежутке от –1 до 1. Чем оно больше, тем сильнее взаимосвязь двух признаков. Если Rxy=0, связь отсутствует, если отрицательное – показатели находятся в обратной зависимости. В результате всех этих расчетов может оказаться, что товар мало продавался не по вине покупателей, которые не брали, а по вине продавца, который не обеспечил наличие товара в продаже. А значит, прежде чем отказываться от него (загонять на вторые или третьи позиции) стоит разобраться, как бы этот товар продавался, если бы был в наличии – т.е. построить соответствующую модель с учетом трендовой составляющей. Ведь АВС-анализ проводится для того, чтобы управлять товаром в будущем. Логистика – это не просто фиксация и анализ текущих событий, но еще и прогнозирование, предсказание. Стабильна ли стабильность? Определенные условия надо соблюдать и при проведении XYZ-анализа. В частности, здесь огромное значение имеет уровень детализации: просчитывать продажи в разрезе дня, недели или месяца. Редкий товар попадает в категорию Х при всех трех уровнях. Например, хлеб продается-покупается каждый день. Если анализировать стабильность его продаж по неделям, он может войти в категорию Х, а если по дням, то, скорее всего, в Y, потому что есть еженедельные всплески, когда с пятницы все затовариваются на выходные, в субботу покупают мало, а в воскресенье вечером опять покупают с запасом на следующий день. В разрезе месяцев это опять может быть категория Х. Выбирается уровень детализации исходя из того, для чего проводится анализ. Если для управления запасами, то понятно, что временная детализация должна быть сопоставима с циклом выполнения заказа. Допустим, срок поставки по контракту месяц – стоит ли в таком случае делать XYZ-анализ по дням? – Нет. Но и месячная детализация может оказаться некорректной. Скорее всего, здесь надо анализировать стабильность продаж понедельно. Если же выполнение заказа занимает два дня, XYZ надо делать в разрезе дней, если 3–4 месяца – переходим на месячный уровень детализации. Но это – для оперативного управления. А если, допустим, нужны данные для стратегического планирования – так ли здесь интересны ежедневные колебания? Т.е. XYZ-анализов тоже может быть несколько для разных целей. И все-таки он работает! В результате всех этих долгих рассуждений мы пришли к той же системе из 9 групп управления с разными цифрами и иными параметрами. Но не к одной, а к разным системам для разных сегментов и разных целей. И не к стационарной, раз и навсегда установленной, а динамичной, в которой товар постоянно мигрирует в зависимости от изменений среды. А мы отслеживаем этот процесс и адекватно реагируем. Простой пример – мороженое. В межсезонье, зимой его покупают мало, и запасами мы управляем слабенько, контролируем раз в месяц – подвези и забыли. К весне начался спрос, и мы переходим к более качественному управлению. В момент пикового спроса начинаем контролировать очень жестко. А когда спрос ушел – опять меньше. И при этом и АВС, и XYZ-анализ работают и здорово нам помогают! дата: 00.00.0000 00:00:00 просмотров: 1493 рейтинг: (Голосов: 1, Рейтинг: 5)
01.05.2023 Клеверенс «Клеверенс» – российский разработчик мобильных систем учёта по штрихкодам и радиочастотным (RFID) меткам подробнее
Ассоциация Экспертов "Школа практических бизнес технологий" За уникальными знаниями — будущее: инновационные идеи, новые подходы, методики и стратегии ведения бизнеса подробнее
Генеральные партнёры Сайт "KlubOK.net - материалы об управлении и маркетинге" входит в 10 самых посещаемых и известных русскоязычных сайтов по теме "Менеджмент и консалтинг" подробнее
Другие статьиНаши статьиКниги по логистикеТеория. Аналитика.О логистикеСкладская логистикаПроизводственная логистикаУправление запасамиТранспорт. Экспедирование.Учёт. Документооборот.Распределительная логистика. Маркетинг.ВЭД. Закупки. Таможня.Информационные технологии.Регламенты, Нормативы, Инструкции, Формы документовУправление. Мотивация. Правила интернет-магазинаСтол ЗаказовИнтернет-магазин Правила сайтаКарта сайта
Правила биржи трудаСоискателю:Вакансии. Поиск работыДобавить резюмеРаботодателю:Резюме. Подбор персоналаДобавить вакансию